Digital LED Dimmer With 2 Digit Display Using PIC Micro-Controller

Digital LED dimmer with 2 digit display, simple circuit using PIC16F1825  Micro-Controller and CAT4016 LED diver from www.onsemi.com .  LED intensity can set using two tact switches. The board provides TTL PWM 1-99% duty cycle out which required Mosfet/BJT transistor or LED driver on output for LED load. Frequency 250Hz.

  • Supply 4.5 to 5V DC
  • Range 01 to 99 Duty Cycle
  • On Board Two Switches for PWM
  • On Board Power LED

 

 

 

 

 

 

 

 

 

 

LM317-ADJ Resistor Value and Circuit for 3.3V,5V,12V,15V,18V

LM317-ADJ Resistor Value and Circuit for 3.3V,5V,12V,15V,18V

CALCULATION COURTESY  WWW.REUK.CO.UK

 

 

Sorted List of Output Voltages with R1 and R2

1.43V R1 = 470, R2 = 68
1.47V R1 = 470, R2 = 82
1.48V R1 = 370, R2 = 68
1.51V R1 = 330, R2 = 68
1.51V R1 = 390, R2 = 82
1.52V R1 = 470, R2 = 100
1.53V R1 = 370, R2 = 82
1.56V R1 = 330, R2 = 82
1.57V R1 = 270, R2 = 68
1.57V R1 = 470, R2 = 120
1.57V R1 = 390, R2 = 100
1.59V R1 = 370, R2 = 100
1.60V R1 = 240, R2 = 68
1.63V R1 = 330, R2 = 100
1.63V R1 = 270, R2 = 82
1.64V R1 = 390, R2 = 120
1.64V R1 = 220, R2 = 68
1.65V R1 = 470, R2 = 150
1.66V R1 = 370, R2 = 120
1.68V R1 = 240, R2 = 82
1.71V R1 = 330, R2 = 120
1.71V R1 = 270, R2 = 100
1.72V R1 = 220, R2 = 82
1.72V R1 = 180, R2 = 68
1.73V R1 = 470, R2 = 180
1.73V R1 = 390, R2 = 150
1.76V R1 = 370, R2 = 150
1.77V R1 = 240, R2 = 100
1.81V R1 = 270, R2 = 120
1.82V R1 = 150, R2 = 68
1.82V R1 = 330, R2 = 150
1.82V R1 = 180, R2 = 82
1.83V R1 = 390, R2 = 180
1.84V R1 = 470, R2 = 220
1.86V R1 = 370, R2 = 180
1.88V R1 = 240, R2 = 120
1.89V R1 = 470, R2 = 240
1.93V R1 = 330, R2 = 180
1.93V R1 = 150, R2 = 82
1.94V R1 = 270, R2 = 150
1.96V R1 = 390, R2 = 220
1.97V R1 = 470, R2 = 270
1.99V R1 = 370, R2 = 220
2.02V R1 = 390, R2 = 240
2.03V R1 = 240, R2 = 150
2.06V R1 = 370, R2 = 240
2.08V R1 = 330, R2 = 220
2.10V R1 = 220, R2 = 150
2.12V R1 = 390, R2 = 270
2.13V R1 = 470, R2 = 330
2.16V R1 = 330, R2 = 240
2.16V R1 = 370, R2 = 270
2.19V R1 = 240, R2 = 180
2.23V R1 = 470, R2 = 370
2.25V R1 = 150, R2 = 120
2.27V R1 = 270, R2 = 220
2.27V R1 = 330, R2 = 270
2.29V R1 = 470, R2 = 390
2.29V R1 = 180, R2 = 150
2.31V R1 = 390, R2 = 330
2.36V R1 = 270, R2 = 240
2.37V R1 = 370, R2 = 330
2.40V R1 = 240, R2 = 220
2.44V R1 = 390, R2 = 370
2.50V R1 = 470, R2 = 470
2.57V R1 = 370, R2 = 390
2.61V R1 = 220, R2 = 240
2.65V R1 = 330, R2 = 370
2.66V R1 = 240, R2 = 270
2.73V R1 = 330, R2 = 390
2.74V R1 = 470, R2 = 560
2.75V R1 = 150, R2 = 180
2.76V R1 = 390, R2 = 470
2.78V R1 = 270, R2 = 330
2.78V R1 = 220, R2 = 270
2.84V R1 = 370, R2 = 470
2.92V R1 = 180, R2 = 240
2.96V R1 = 270, R2 = 370
2.97V R1 = 240, R2 = 330
3.03V R1 = 330, R2 = 470
3.05V R1 = 390, R2 = 560
3.06V R1 = 270, R2 = 390
3.06V R1 = 470, R2 = 680
3.08V R1 = 150, R2 = 220
3.13V R1 = 220, R2 = 330
3.14V R1 = 370, R2 = 560
3.18V R1 = 240, R2 = 370
3.25V R1 = 150, R2 = 240
3.28V R1 = 240, R2 = 390
3.35V R1 = 220, R2 = 370
3.37V R1 = 330, R2 = 560
3.43V R1 = 270, R2 = 470
3.43V R1 = 390, R2 = 680
3.43V R1 = 470, R2 = 820
3.47V R1 = 220, R2 = 390
3.50V R1 = 150, R2 = 270
3.54V R1 = 180, R2 = 330
3.55V R1 = 370, R2 = 680
3.70V R1 = 240, R2 = 470
3.82V R1 = 180, R2 = 370
3.83V R1 = 330, R2 = 680
3.84V R1 = 270, R2 = 560
3.88V R1 = 390, R2 = 820
3.91V R1 = 470, R2 = 1000
3.92V R1 = 220, R2 = 470
3.96V R1 = 180, R2 = 390
4.00V R1 = 150, R2 = 330
4.02V R1 = 370, R2 = 820
4.17V R1 = 240, R2 = 560
4.33V R1 = 150, R2 = 370
4.36V R1 = 330, R2 = 820
4.40V R1 = 270, R2 = 680
4.43V R1 = 220, R2 = 560
4.44V R1 = 470, R2 = 1200
4.46V R1 = 390, R2 = 1000
4.50V R1 = 150, R2 = 390
4.51V R1 = 180, R2 = 470
4.63V R1 = 370, R2 = 1000
4.79V R1 = 240, R2 = 680
5.04V R1 = 330, R2 = 1000
5.05V R1 = 270, R2 = 820
5.10V R1 = 390, R2 = 1200
5.11V R1 = 220, R2 = 680
5.14V R1 = 180, R2 = 560
5.17V R1 = 150, R2 = 470
5.24V R1 = 470, R2 = 1500
5.30V R1 = 370, R2 = 1200
5.52V R1 = 240, R2 = 820
5.80V R1 = 330, R2 = 1200
5.88V R1 = 270, R2 = 1000
5.91V R1 = 220, R2 = 820
5.92V R1 = 150, R2 = 560
5.97V R1 = 180, R2 = 680
6.04V R1 = 470, R2 = 1800
6.06V R1 = 390, R2 = 1500
6.32V R1 = 370, R2 = 1500
6.46V R1 = 240, R2 = 1000
6.81V R1 = 270, R2 = 1200
6.92V R1 = 150, R2 = 680
6.93V R1 = 330, R2 = 1500
6.94V R1 = 180, R2 = 820
7.02V R1 = 390, R2 = 1800
7.10V R1 = 470, R2 = 2200
7.33V R1 = 370, R2 = 1800
7.50V R1 = 240, R2 = 1200
8.07V R1 = 330, R2 = 1800
8.08V R1 = 150, R2 = 820
8.19V R1 = 270, R2 = 1500
8.30V R1 = 390, R2 = 2200
8.43V R1 = 470, R2 = 2700
8.68V R1 = 370, R2 = 2200
9.06V R1 = 240, R2 = 1500
9.58V R1 = 330, R2 = 2200
9.77V R1 = 220, R2 = 1500
9.90V R1 = 390, R2 = 2700
10.03V R1 = 470, R2 = 3300
10.37V R1 = 370, R2 = 2700
10.63V R1 = 240, R2 = 1800
11.25V R1 = 150, R2 = 1200
11.44V R1 = 270, R2 = 2200
11.48V R1 = 330, R2 = 2700
11.67V R1 = 180, R2 = 1500
11.83V R1 = 390, R2 = 3300
12.40V R1 = 370, R2 = 3300
12.71V R1 = 240, R2 = 2200
13.75V R1 = 330, R2 = 3300
15.31V R1 = 240, R2 = 2700
16.25V R1 = 150, R2 = 1800
16.53V R1 = 270, R2 = 3300
16.59V R1 = 220, R2 = 2700
18.44V R1 = 240, R2 = 3300
19.58V R1 = 150, R2 = 2200
20.00V R1 = 220, R2 = 3300
23.75V R1 = 150, R2 = 2700
24.17V R1 = 180, R2 = 3300
28.75V R1 = 150, R2 = 3300

2.3 Inch Large Size 3 Digit 7 Segment SPI Display Schematic and PCB using 74HC595 and ULN2803

3 Digit 2.3 inch 7 segments SPI protocol Display module using 74HC595 project will display large size 7 segment 3 digit numbers. 2.3 Inch height, which can be visible over large distance.  More digit can be connected serially to each other easily trough connector.

This circuit is a 3 digit seven segment big display using 74HC595 shift register for easy control by micro-controller. useful circuit to make Timer, stop watch, Score Board, Token No, Vehicle counter at parking and many other applications.

Features

  • Supply 12V DC For Display
  • Supply 5V For logic 75HC595
  • Inputs data TTL signals

 

 

 

DOWNLOAD PDF PCB LAYOUT

DOWNLOAD PDF SCHEMATIC

 

 

 

 

 

Passive PFC Circuit for 250W PC Power Supply

The circuit show here is input circuitry of the power supply with passive PFC. Note the line voltage range switch connected to the center tap of the PFC inductor. In the 230V position (switch Open) both halves of the inductor winding are used and the rectifier functions as a full wave bridge. in the 115V ( switch closed) position only the left half of the inductor and left half of the rectifier bridge are used, placing the circuit in the half wave double mode. As in the case of the full wave rectifier with 230V AC input, this produces 325V DC at the output of the rectifier. This 325 VDC bus is , of course, unregulated and move up and down with i9nput line voltage.

Circuit Courtesy www.onsemi.com

Power Supply For Ultra High-Fidelity Audio Amplifier LME49810, LME49811, LME49830

This application note will cover the design of a ±72V unregulated power supply designed specifically for the LME49810, LME49811 and LME49830 high-fidelity audio amplifier modules. The output power of the modules are approximately 220W to 250W into 8Ω and 350W to 400W into 4Ω. Complete documentation for the amplifier modules can be found in the documents listed below. AN-1625 LME49810TB Ultra-High Fidelity, High-Power Amplifier Reference Design AN-1850 LME49830TB Ultra-High Fidelity, High-Power Amplifier Reference Design Although the power supply design is specific to the amplifier modules the concepts and circuit design may be used for any power supply purpose. The power supply is an unregulated design with an option to allow connection to either 120V or 240V mains. The design uses toroidal transformers, a fully integrated bridge, and various rail capacitors for ripple voltage reduction, noise suppression, and to act as high current reservoirs. Additional circuitry to control inrush current on power up and power up/ down Mute control are also included. A complete schematic, PCB views, and Bill of Materials are provided for the power supply design.

Texas Instrument Applications Down Load

 

 

900W PFC Circuit

This PFC circuit is designed using Power Integration’s HiperPFS PFS729EG integrated PFC controller. This design is rated for a continuous output power of 900 W and provides a regulated output voltage of 380 VDC nominal maintaining a high input power factor and overall efficiency from light load to full load.

4.1 Input EMI Filtering and Rectifier

Fuse F1 provides protection to the circuit and isolates it from the AC supply in case of a fault. Diode bridge BR1 rectifies the AC input. Capacitors C1, C2, C3, and C4 together with inductors L1, L2 and L3 form the EMI filter reducing the common mode and differential mode noise. Resistors R1, R2 and CAPZero, IC U1 are required to discharge the EMI filter capacitors once the circuit is disconnected. High frequency decoupling capacitor C5 after the bridge reduces the loop area of the high frequency loop and helps reduce the noise coupled into the input wires. Resistor R3 connected in series with capacitor C1 provides damping. Metal Oxide Varistor RV1 is placed across AC power lines to provide differential mode surge protection.

4.2 PFS729EG Boost Converter

The boost converter stage consists of inductor L4, diode rectifier D2 and the PFS729EG IC U2. This converter stage works as a variable frequency continuous conduction mode boost converter and controls the input current of the power supply while simultaneously regulating the output DC voltage. Diode D1 prevents a resonant buildup of output voltage at start-up by bypassing inductor L4 while simultaneously charging output capacitor C13. Thermistor RT1 limits the inrush current of the circuit at start-up. In higher performance (efficiency) power supplies, this thermistor is shorted after start-up using a relay. Efficiency measurements should therefore be taken with RT1 shorted to obtain maximumefficiency data. Capacitors C11 and C12 are used for reducing the loop length and area of the output circuit to reduce EMI and overshoot of the voltage across the drain and source of the MOSFET inside U2 at each switching instant.

4.3 Bias Supply Regulator

The PFS729EG IC requires a regulated supply of 12 V for operation. Should this supply exceed 13.4 V, the IC could be damaged. Resistors R7, R8, R9, Zener diode VR1, and transistor Q1 form a shunt regulator that prevents the supply voltage to IC U2 from exceeding 12 V. Capacitors C6, C7 and C8 filter the supply voltage to ensure reliable operation of IC U2. Diode D3 protects the circuit against accidental reversal of polarity of the bias supply.

4.4 Input Feed Forward Sense Circuit

The input voltage of the power supply is sensed by the IC U2 using resistors R4, R5 and R6. The capacitor C9 filters any noise on this signal.

 

Circuit From www.powerint.com

65W Laptop Power Adapter Circuit Diagram

The schematic in Figure 1 depicts a notebook adapter power supply employing the Power Integrations® TOPSwitch®-HX TOP258EN off-line switcher in a fl yback configuration. This power supply operates from a universal input to provide a 19 V, 65  output capable of operation in a sealed enclosure at an ambient temperature of up to 40 °C. The TOP258EN (U1) has an integrated 700 V MOSFET and a multi-mode controller to regulate output by adjusting the MOSFET duty cycles, in response to current fed into the Control (C) pin. The Eco Smart® function in U1 provides constant efficiency over an entire load range. Using a proprietary multi-cycle-modulation (MCM) function eliminates the need for special operating modes triggered at specific  loads and operating conditions, optimizing performance for existing and emerging energy-efficiency regulations. Fuse F1 provides protection to the rest of the circuit from catastrophic failures. Common-mode inductors L3 and L4 provide line fi ltering. X-capacitor C1 provides differential fi ltering, and resistors R1 and R2 provide safety from shock upon AC removal. Bridge rectifi er D1 rectifies the AC input, and bulk capacitor C2 fi lters the DC. Y-capacitor C11, connected between the transformer (T1) primary and secondary side provides common-mode filtering.

 

 

 

Circuit From www.powerint.com

NTC For Power Supply

NTC Thermistor devices are made of a specially formulated metal oxide ceramic material which is capable of suppressing high current surges. TP type NTC devices, being of relatively high resistance, shall limit the inrush current for 1~2 seconds during which time the device decreases in resistance substantially to a point where its voltage drop is negligible. The devices are especially useful in power supplies (see FigA) because of the extremely low impedance of the capacitor being charged, of which the bridge is usually subjected to an exceedingly high current surge at turn-on point. NTC Thermistor of Inrush Current Limiting High inrush

As shown in Fig. , the current surge can be eliminated by Placing a NTC thermistor in series with a filament string. Yet, if the resistance of one NTC thermistor does not provide sufficient inrush current limiting functions for your application, two or more may be used in series or in separate legs of the supply circuit (Fig.A). Be noticed, the thermistor cannot be used in parallel since one unit will tend to conduct nearly all the current available. Thus, thermistor may be used in the AC (point A1 or A2) or the DC(point D1 or D2) locations in the circuit.(See Fig. A) The resistance of NTC thermistor is designed higher than the total resistance of filaments when the circuit is turned on. As current begins flowing, the thermistor shall immediately self-heat . Then, in 1~2 seconds, its resistance will be reduced to a minimum and become insignificant to the total resistance of a circuit. With the same concept, current surges in electric motors can be held to minimum. Fig. C shows a typical DC motor s turn on surge before and after the application of a TP type thermistor to the circuit.

 

Details From WMEC Application

 

1 2 3 4