1.6KW Brush-Less Motor Power Driver Using IPM STK554U362

The compact motor drive power board is based on STK554U362A IPM module from ON semiconductor. It provides an affordable and easy-to-use solution for driving high power Brushless servo, AC Motors, and DC Brushless motors in a wide range of applications such as power white goods, air conditioning, compressors, power fans, high-end power tools and 3-phase inverters for motor drives in general.

The IPM itself consists of short-circuit rugged IGBTs and a wide range of features like (UVP) under voltage protection, (OCP) Over current protection with fault detection output flag , embedded temperature sensor NTC.Internal Boost diodes are provided for high side gate boost drive.

The main characteristics of this project are its small size, minimal BOM and high efficiency. It consists of an interface circuit, bootstrap capacitors, fault event signal and temperature monitoring. It is designed to work in single or three shunt configuration and with dual current sensing options: using three dedicated on-board op-amps

Thanks to these advanced characteristics, the system can provide the fast and accurate current feedback conditioning necessary for field oriented control (FOC). Refer Data sheet for more information

 

  • Input voltage: 125 to 400 VAC
  • Nominal power: up to 1600 W
  • Nominal current: up to 10 A
  • Input auxiliary voltage: up to 20 VDC
  • On Board 5V Regulator for Op-Supply
  • D2 Power LED (Gate Driver Supply)
  • 3 Pin Screw Terminal for AC Supply Input
  • 4 Pin Screw Terminal Connector For Motor Connections
  • On Board Fuse for Short Circuit Protection
  • Single- or three- shunt resistors for current sensing
  • IPM temperature monitoring and protection
  • Highly integrated device containing all High Voltage (HV) control from HV-DC to 3-phase outputs in a single small SIP module.
  • Output stage uses IGBT/FRD technology and implements Under Voltage Protection (UVP) and Over Current Protection (OCP) with a Fault Detection output flag. Internal Boost diodes are provided for high side gate boost drive.
  • 3 Independent shunt resistors and 3 X Channel signal condition amplifiers help to easy FOC based driver
  • Header connector provided for inputs and logic supply input
  • Externally accessible embedded thermistor for substrate temperature measurement.
  • Single control power supply due to internal bootstrap circuit for high side pre-driver circuit.
  • Externally accessible embedded thermistor for substrate temperature measurement.
  • All control inputs and status outputs are at low voltage levels directly compatible with micro-controllers.

Note : This board also supports following ICs

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TheSTK554U362A is Intelligent Power Module (IPM) based upon ONs Insulated Metal Substrate Technology (IMST) for 3-phase motor drives which contain the main power circuitry and the supporting control circuitry. The key functions are outlined below:

 

IC PIN FUNCTIONS

 

+, U-, V-, W-

These pins are connected with the main DC power supply. The applied voltage is up to the Vcc level. Overvoltage on these pins could be generated by voltage spikes during switching at the floating inductance of the wiring. To avoid this behavior the wire trac-es need to be as short as possible to reduce the floating inductance. In addition a snubber capacitor needs to be placed as close as possible to these pins to stabilize the voltage and absorb voltage surges.

 

U, V, W

These terminals are the output pins for connecting the 3-phase motor. They share the same GND potential with each of the high side control power supplies. Therefore they are also used to connect the GND of the bootstrap capacitors. These bootstrap capaci-tors should be placed as close to the module as possible.

 

VDD, VSS

These pins connect with the circuitry of the internal protection and pre-drivers for the low-side power elements and also with the control power supply of the logic circuitry. Voltage to input these terminals is monitored by the under voltage protection circuit. The VSS terminal is the reference voltage for the control inputs signals.

 

VB1, VB2, VB3

The VBx pins are internally connected to the positive supply of the high-side drivers. The supply needs to be floating and electrically isolated. The boot-strap circuit shown in Figure 20 forms this power supply individually for every phase. Due to integrated boot resistor and diode (RB & DB) only an external boot capacitor (CB) is required.

CB is charged when the following two conditions are met. ① Low-side signal is input ② Motor terminal voltage is low level

The capacitor is discharged while the high-side driver is activated.

Thus CB needs to be selected taking the maximum on time of the high side and the switching frequency into account.

 

The voltages on the high side drivers are individually monitored by the under voltage protection circuit. In case an UVP event is detected on a phase its operation is stopped.

Typically a CB value of less or equal 47uF (±20%) is used. In case the CB value needs to be higher an external resistor (of apx. 20Ω or less) should be used in series with the capacitor to avoid high currents which can cause malfunction of the IPM.

 

HIN1, LIN1, HIN2, LIN2, HIN3, LIN3

These pins are the control inputs for the power stages. The inputs on HIN1/HIN2/HIN3 control the high-side transistors of U/V/W, and the inputs on LIN1/LIN2/LIN3 control the low-side transistors of U/V/W respectively. The input are active high and the input thresholds VIH and VIL are 5V compatible to allow direct control with a microcontroller system

Simultaneous activation of both low and high side is prevented internally to avoid shoot through at the power stage. However, due to IGBT switching delays the control signals must include a dead-time.

 

 

For fail safe operation the control inputs are internally tied to VSS via a 33kΩ (typ) re-sistor. To avoid switching captured by external wiring to influence the module behavior an additional external low-ohmic pull-down resistor with a value of 2.2kΩ-3.3kΩ should be used.

The output might not respond when the width of the input pulse is less than 1μs (both ON and OFF).

 

FLTEN

The FLTEN pin is an active low input and open-drain output. It is used to indicate an in-ternal fault condition of the module and also can be used to disable the module opera-tion. The I/O structure is shown

 

The internal sink current IoSD during an active fault is nominal 2mA @ 0.1V. Depending on the interface supply voltage the external pull-up resistor (RP) needs to be selected to set the low voltage below the VIL trip level.

For the commonly used supplies VP:

VP = 15V -> RP >= 20kΩ VP = 5V -> RP>= 6.8kΩ

 

For a detailed description of the fault operation refer data sheet chapter 4

 

Note: The Fault signal does not latch permanently. After the protection event ended and the fault clear time(2ms) passed, the module operation is automatically re-started. Therefore the input needs to be driven low externally activated as soon as a fault is detected.

 

TH

An internal thermistor to sense the substrate temperature is connected between TH and VSS. By connecting an external pull-up resistor to arbitrary voltage, the module temperature can be monitored. Please refer to heading 3.2 for details of the thermis-tor.

Note: This is the only means to monitor the substrate temperature indirectly.

 

 

Operation procedure

Step1: Please connect IPM, each power supply, logic parts, and the motor to the evaluation board,

and confirm that each power supply is OFF at this time.

Step2: Please impress the power supply of DC15V.

Step3: Please perform a voltage setup according to specifications, and impress the power supply

between the “+” and the “-” terminal.

Step4: By inputting signal to the logic part, IPM control is started.

(Therefore, please set electric charge to the boot-strap capacitor of upper side to turn on

lower side IGBT before running.)

* When turning off the power supply part and the logic part, please carry out in the reverse order

to above steps.

Metal Detector Schematic and PCB layout Using TDA0161

The Metal detector project is designed for metallic body detection by sensing variations in high frequency Eddy current losses. Using an externally-tuned circuit, they act as oscillators. The output signal level is altered by an approaching metallic object. The output signal is determined by supply current changes. Independent of supply voltage, this current is high or low, according to the presence or absence of a closely located metallic object Between pins 3 and 7, the integrated circuit acts like a negative resistor with a value equal to that of the external resistor R3 and trimmer potentiometer PR1 (connected between pins 2 and 4). The oscillation stops when the tuned circuit loss resistance (Rp) becomes smaller than R3. As a result, ICC(close) = 10mA (pins 1 and 6). The oscillation is sustained when Rp is higher than R3, and ICC(remote) = 1mA (pins 1 and 6). Eddy currents induced by coil L1 in a metallic body determine the value of Rp.

  • Supply 5-12V DC
  • Output Normally High , Provide Low output in presence of Metal
  • LED Sensor Active Indicator
  • Sensing Distance 5-15mm

Download PDF Schematic & PCB Layout

 

 

 

 

2 Channel Relay Shield for Arduino UNO Circuit and PCB layout

2 Channel Relay Shield for Arduino UNO Circuit and PCB layout

2 Channel Relay shield for Arduino UNO can be used in several applications like remote control, on/off AC or Dc load and any circuits which required isolated high current and high voltage. Relay 1 connected to Digital pin D2 and Relay 2 can be controlled through D12 of Arduino PIN. Both relay has optocoupler in input for isolation which protect Arduino from any EMI noise and complete isolation between high volt/current at relay outputs.  Relay shield required separate 12V DC. Two LED indicate the Relay operations. J1,J2 provided In case single supply for relay and Arduino required.

  • Input: 12 VDC @ 84 mA
  • D2 and D12 Arduino connected to Relay inputs
  • Solder PCB Jumper J1 and J2 if Shield and Arduino need common supply
  • High TTL Signal Required to Trigger the Relay
  • Output: Two SPDT relay
  • Relay specification: 5 A @ 230 VAC
  • Trigger level : 2 to 12 VDC
  • Header connector for connecting power and trigger voltage
  • LED on each channel indicates relay status
  • Power Battery Terminal (PBT) for easy relay output connection

 

 

 

 

 

17 Channel Optically Isolated I/O Shield for Arduino Uno Using LOC111, PC817,6N137 Opto-couplers

17 Channel Optically Isolated I/O Shield for Arduino Uno

The shield enables you to  interface many things to Arduino Uno , all I/O are optically isolated, The shield consist  8 Channel low speed outputs which can be used for on/off applications. 3 Channel high speed outputs frequency up to 10 MHz using 6N137. 4 Channel slow inputs using PC817 opto-coupler. One high speed input frequency up to 10 MHz using 6N137, and one analog voltage input using LOC111 IC. Board provided with multi option isolated i/o line to integrate multiple sensors and other things.

Features

  • Supply 5V DC
  • 8 Low Speed Outputs for On/Off Slow Operations Using PC817
  • Slow Outputs Connected to Digital Pins D2,D3,D4,D5,D6,D7,D12,D13
  • 3 Channel High Speed Outputs Frequency Upto 10Mhz Using 6N137 Optocoupler
  • 3 High Speed Outputs Connected to PWM Pins D9,D10,D11
  • 4 Channel Low Speed Inputs Connected to Analog Pins A1,A2,A3,A4 (PC817)
  • 1 Channel High Speed Input Connected to Digital Pin D8 Frequency Up to 10Mhz
  • 1 Channel Analog Voltage Input 0 To 5V 

 

PDF Schematic

 

 

 

 

 

LM386 SMD AUDIO AMPLIFIER CIRCUIT

The Tiny Audio Amplifier MODULE  is a good choice for battery operation. It is based on  LM386 IC, useful in various applications like robotics, science projects, intercom, FM radio and many more.

  • Power Supply 6V-9V
  • 300mW Output @ 8Ohms Load
  • On Board Potentiometer for Audio Level Adjust
  • Header Connecter for Supply, Signal in and Speaker
  • On Board Power LED
  • Input: Standard Audio Signal

 

 

 

 

 

 

5A DC Motor Speed And Direction Controller Using MC33035

5AMP DC Motor speed and direction controller using MC33035 IC from on semiconductor, though the MC33035 was designed to control brushless DC motor , it may also be used to control DC brush type motors. MC33035 driving a Mosfets based H-Bridge affording minimal parts count to operate a brush type motor. On board potentiometer provided for speed control, slide switch for direction control and brake, On board jumper available to enable the chip. The controller function is normal manner with a PWM frequency of approximately 25Khz. Motor speed is controlled by adjusting the voltage presented to the no inverting input of the error amplifier establishing the PWM’s slice or reference level. Cycle by cycle current limiting of the motor current is accomplished by sensing the voltage across the shunt resistor to ground of the H-bridge. The overcurrent sense circuit makes it possible to reverse the direction of the motor, using normal forward/reverse switch, on the fly and not have to completely stop before reversing.

  • SUPPLY 12-18V DC
  • Load Up to 5Amps, 5Amps with large size heat sink on Mosfets
  • On Board Potentiometer for Speed Control
  • Slide Switch ( SW1) for Brake
  • Slide Switch (SW2) for Direction Control
  • Jumper (J1) Provided to Enable the chip
  • LED (D1) Fault Indicator
  • LED (D2) Power Indicator
  • CN1 , Supply 12-18V DC
  • MG1 Motor Connections

 

 

 

 

 

 

 

Step-Dir. signal to double drive CW/CWW Pulse Converter for CNC, Motion Control & AC Servo Driver

Simple Circuit converts Step/Dir. signal into to double drive CW/CWW Pulse, Mach3 and few Hobby CNC software’s provides Step/Direction pulse output to drive stepper motor drivers.

Various AC servo works with double CW/CCW pulse. This circuit is solution to interface such AC CW/CCW pulse based driver with Mach3 or other CNC software’s. Circuit designed around 7408 and 7404 IC, board support 5V or 24V supply. Open Collector output can be interface with 24V system by changing output resistors.

Features

  • Supply 7V 24V DC
  • On Board Power LED
  • Inputs and Outputs Header Connector
  • On Board ERTH (Earth) Signal provided for chassis ground to avoid any noise

 

Note : Output Transistor can drive Stepper Drive or Servo driver Opto-couplers directly , choose appropriate collector resistor value for 5V or 24V

 

  • R3,R5,R9 470 Ohms for 5V DC Open Collector Output
  • R3,R5,R9 2K2 Ohms for 24V DC Open Collector Output

 

Inputs:

  1. Step Pulse ( TTL 5V)
  2. Direction Pulse ( TTL 5V)
  3. Enable Signal ( TTL 5V )

 

Outputs:

1 CW (5V Or 24V Open Collector)

  1. CWW ( 5V Or 24V Open Collector )
  2. Enable ( 5V Or 24V Open Collector )

 

 

 

 

 

 

 

 

4.5A H-Bridge DC Motor Driver Module Using TB6549HQ

The H-Bridge Motor Driver Module Based on TB6549HQ IC from Toshiba, is a full-bridge driver IC for DC motors that uses an LDMOS structure for output transistors. High-efficiency drive is possible through the use of a MOS process with low ON-resistance and a PWM drive system. Four modes, CW, CCW, short brake, and stop, can be selected using IN1 and IN2. Supply input 12V to 30V DC and Maximum Load 4.5Amps.
Specifications

  • Power supply voltage: 30 V (max)
    Output current 4.5 A
    Low ON-resistance: 1.0 Ω (up + low/typ.)
    PWM control capability
    Standby system
    Function modes: CW/CCW/short brake/stop
    Built-in overcurrent protection
    Built-in thermal shutdown circuit

 

 

 

 

 

 

 

 

 

 

 

 

1 2 3 4 5 48