Universal Dual Op-Amp Development PCB & Schematic using THT Components

The Universal Op-Amp Development board is a general purpose blank circuit boards that simplify prototyping circuits for a variety of Op-Amp circuits. The evaluation module board design allows many different circuits to be constructed easily and quickly.

Universal Dual Operational Amplifier (Op-Amp) board is designed to aid in the evaluation and testing of the low voltage/low power and some precision operational amplifiers. This board will accommodate Dual op amp that are assembled in a 8 Pin Dip package. This board is designed to use single or dual amplifiers. Many different circuits can be made such as inverting, non-inverting, differential-In amplifiers and low-pass, band-pass, band reject, or notch second order filters. The amplifier can be powered with single or dual supplies. These circuits can be configured without any modifications to the board, all that is necessary is to select the correct resistors and capacitors. The other optional components can be left open or shorted depending on the configuration desired.

Power is applied to the Header connector pins labeled VCC,-VEE, GND, If a single supply is used, then -VEE should be connected to GND.

This board mainly support lots of Texas instruments Op-Amps, On Semi, Analog Devices

List Of Op-Amps Can be use

  • OPA2350
  • OPA2340
  • LM358
  • LF422






Inverting Operational Amplifier Circuit ( Universal Op-Amplifier Development Board)

This is most widely used operational amplifier circuit.  It is an amplifier whose closed-loop gain is set by R27 & R18. It can amplify AC or DC Signal.

Non Inverting Operation Amplifier ( Universal Op-Amplifier Development Board)

This simple circuit is a non-inverting Operation Amplifier can be made using universal Op-Amplifier Development Board. Output voltage has same phase as the input voltage ( For DC Input)

LM324 Op-Amp Inverting Amplifier Application and Gain Calculation

The LM324 and LM2902 operational amplifiers are useful in a wide range of signal conditioning applications. Inputs can be powered before VCC for flexibility in multiple supply circuits.

A typical application for an operational amplifier in an inverting amplifier. This amplifier takes a positive voltage on the input, and makes it a negative voltage of the same magnitude. In the same manner, it also makes negative voltages positive. This application is from www.ti.com


Voltage To Frequency Converter Range 10Hz To 11Khz Using LM331

The LM331 family of voltage-to-frequency converters are ideally suited for use in simple low-cost circuits for analog-to-digital conversion, precision frequency-to-voltage conversion, long-term integration, linear frequency modulation or demodulation, and many other functions. The output when used as a voltage-to-frequency converter is a pulse train at a frequency precisely proportional to the applied input voltage. Thus, it provides all the inherent advantages of the voltage-to-frequency conversion techniques, and is easy to apply in all standard voltage-to-frequency converter applications.

Further, the LMx31A attain a new high level of accuracy versus temperature which could only be attained with expensive voltage-to-frequency modules. Additionally the LMx31 are ideally suited for use in digital systems at low power supply voltages and can provide low-cost analog-to-digital conversion in microprocessor-controlled systems. And, the frequency from a battery-powered voltage-to-frequency converter can be easily channeled through a simple photo isolator to provide isolation against high common-mode levels.

The LMx31 uses a new temperature-compensated band-gap reference circuit, to provide excellent accuracy over the full operating temperature range, at power supplies as low as 4 V. The precision timer circuit has low bias currents without degrading the quick response necessary for 100-kHz voltage-to-frequency conversion. And the output are capable of driving 3 TTL loads, or a high-voltage output up to 40 V, yet is short-circuit-proof against VCC.


  •     Ensured Linearity 0.01% Maximum
  •     Improved Performance in Existing Voltage-to-
  •     Frequency Conversion Applications
  •     Split or Single-Supply Operation
  •     Operates on Single 5-V Supply
  •     Pulse Output Compatible With All Logic Forms
  •     Excellent Temperature Stability: ±50 ppm/°C
  •     Maximum
  •     Low Power Consumption: 15 mW Typical at 15 V
  •     Wide Dynamic Range, 100 dB Minimum at 10-kHz
  •     Full Scale Frequency
  •     Wide Range of Full Scale Frequency:
  •     10 Hz to 11 kHz




1 2 3